In this rapidly developing field, major new research is dramatically changing our understanding of the physics governing flows in the ocean and the physics of the coupled atmosphere-ocean and global climate system. Learn of the many kinds of research being performed by our students and research staff.

Research in physical oceanography attacks some of the most challenging problems in classical physics and fluid dynamics. It is at a stage of rapid evolution (building upon vastly improved observing tools, increased computing power, and new analytical understanding). Major cooperative research efforts are dramatically changing our understanding of the dynamics of the ocean and atmosphere-ocean coupling. The results of these studies will contribute to solving a yet broader range of oceanic, geological, chemical, biological, engineering, and societal problems. The scope of our interests is global.

URI/GSO is at the forefront of investigation into:

  • the physics of rotating and stratified flow
  • the dynamics of strong current systems (western boundary currents, meandering jets and fronts, equatorial current systems)
  • oceanic eddy phenomena
  • development and application of new tools for oceanic research
  • circulation and dynamics on the continental shelf
  • wind-driven and buoyancy-driven large-scale circulation
  • oceanic heat transport and storage, and effects upon global climate
  • physics at the air-sea interface
  • stirring and mixing processes in the coastal ocean
  • tropical cyclones

Graduate School of Oceanography (2010)

The speed of sound in water depends on the water properties of temperature, salinity and pressure (directly related to the depth). A typical speed of sound in water near the ocean surface is about 1520 meters per second. That is more than 4 times faster than the speed of sound in air. The speed of sound in water increases with increasing water temperature, increasing salinity and increasing depth. Most of the change in sound speed in the surface ocean is due to changes in temperature. This is because the effect of salinity on sound speed is small and salinity changes in the open ocean are small. Near shore and in estuaries, where the salinity varies greatly, salinity can have a more significant effect on the speed of sound in water. As the depth increases, the pressure of the water has the largest effect on the speed of sound.

The approximate change in the speed of sound with a change in each property:
Temperature 1°C = 4.0 m/s
Salinity 1PSU = 1.4 m/s
Depth (pressure) 1km = 17 m/s
Note: Changes in the speed of sound for a given property are not linear.

Under most conditions the speed of sound in water is simple to understand. Sound will travel faster in warmer water and slower in colder water. To measure the temperature of the water, a sound pulse is sent out from an underwater sound source and heard by a hydrophone in the water some distance away (up to thousands of kilometers). The time the sound takes to go from the source of the sound to the listening device (a hydrophone) is measured. From the travel time, the speed of sound between the source and the hydrophone can be calculated. If the salinity and depth where the sound traveled are known, the temperature of the water can be calculated. Two specific methods of measuring the temperature of the ocean with sound are explained below.

  • “Mangroves are largely confined to the regions between 30°north and south of the equator, with notable extensions beyond this to the north in Bermuda (32°20’N) and Japan (31°22’N) and to the south in Australia, New Zealand, and the east coast of South Africa.”
  • The slide shows the distribution of mangroves in the Asia Pacific.
  • “The widespread occurrence of mangrove vegetation and the floristic divergence between the ‘old’ and the ‘new’ world, can only be explained by geological events. … The present distribution of individual mangrove species must be seen against this background of plate tectonics and continental drift.”
  • “Each of these various interpretations is based on the existence, during the early Cretaceous, of an extensive tropical sea, the Tethys Sea, separating the northern supercontinent of Lauraisa from the southern Gondwanaland. Mangroves evolved within the Tethys Sea and dispersed outwards. … Around 18 million years ago (mya), … the pantropical mangrove flora became disjunct and developed as two isolated floras (assuming that the southerly extensions of Africa and South America formed impassable barriers to mangrove dispersal). Around 3mya, the Panama gap closed: … Thus, today, there are three disjunct mangrove floras.

Source: Spangle, et al. eds., 1997

In the mid-1980s, Dr. Kenneth Sherman of NOAA’s National Marine Fisheries Service and Dr. Lewis Alexander of the University of Rhode Island pioneered the concept of large marine ecosystems (LMEs). Sherman, Alexander, and several others recognized that large areas of the oceans function as ecosystems, and that pollution from air, land, and water and overexploitation of living resources, along with natural factors, influenced the varying productivity of these ecosystems.

Unveiling the LME concept followed years of discussion, deliberation, and development by oceanographers, marine ecologists, geographers, economists, fisheries scientists, and marine policy makers from around the world. They grappled with how best to understand the variability of large ecosystems and how to manage the oceans’ living resources for sustained productivity. In one of several volumes on LMEs Sherman and Alexander wrote:

“The LME approach brings multidisciplinary marine studies to bear on regional-scale concepts of resource sustainability by examining the causes of variability in the productivity of those regions around the margins of the world’s oceans from which 95% of the annual yields of usable fisheries biomass is harvested. Emphasis is placed on identification of the primary, secondary, and tertiary driving forces controlling the large-scale variability of biomass yields within and among LMEs.”

(From Large Marine Ecosystems: Stress, Mitigation, and Sustainability, 1993)

Dinamika Pantai Utara Kabupaten Indramayu Provinsi Jawa Barat

Dynamics Of The North Coast Indramayu District Of West Java Province

Ida Bagus Adi Anditayana
Departemen Ilmu dan Teknologi Kelautan Institut Pertanian Bogor
Email :
The wind that formed in the sea will trigger a wave. Formation of these waves can be predicted based on forecasting methods CEM (Coastal Engineering Manual). The wind is converted into a surface wave will experience a transformation when it approached the coast due to a function of depth. As a result of this transformation the wave breaking occurs near the coast. Matters related to the wave breaking involves breaking wave angle, the depth of wave breaking and breaking wave height. Three things became critical sediment transport occurring along the coastline. Sediment transport along the coast can be modeled with a grid system. Observations along the North Coast Indramayu shows that shoreline changes due to different patterns of sediment transport throughout the year and each month. The trend is happening in North Beach Indramayu is the occurrence of abrasion, especially in the west season .
Keywords: wind, waves, sediment transport and shoreline change
Angin yang terbentuk di laut akan memicu terjadinya gelombang. Pembentukan gelombang ini dapat diramal berdasarkan metode peramalan CEM (Coastal Engineering Manual). Angin yang dikonversi menjadi gelombang permukaan akan mengalami transformasi ketika mendekati pantai akibat fungsi dari kedalaman. Akibat tranformasi ini maka terjadi gelombang pecah di dekat pantai. Hal yang berkaitan dengan gelombang pecah ini meliputi sudut gelombang pecah, kedalaman gelombang pecah dan ketinggian gelombang pecah. Tiga hal ini menjadi penentu angkutan sedimen yang terjadi di sepanjang garis pantai. Angkutan sedimen sepanjang pantai dapat dimodelkan dengan sistem grid. Hasil pengamatan di sepanjang Pantai Utara Indramayu menunjukkan bahwa terjadi perubahan garis pantai akibat pola angkutan sedimen yang berbeda sepanjang tahun dan tiap bulannya. Kecenderungan yang terjadi di Pantai Utara Indramayu adalah terjadinya abrasi terutama pada musim barat.
Kata kunci : angin, gelombang, transpor sedimen dan perubahan garis pantai

Organisasi Pangan dan Pertanian Perserikatan Bangsa-Bangsa (Food and Agriculture Organization of the United Nations ) memimpin upaya internasional untuk mengalahkan kelaparan. FAO bertindak sebagai forum netral melayani baik negara maju dan berkembang. Semua negara berkedudukan setara untuk  menegosiasikan kesepakatan dan kebijakan yang terkait dengan pangan. FAO juga merupakan sumber pengetahuan dan informasi data. FAO membantu negara-negara berkembang dalam bidang pertanian, kehutanan dan perikanan.

Pada tahun 1995, negara-negara anggota FAO secara serius menangani masalah perikanan dan akuakultur. Berbagai upaya dan strategi disusun terutama untuk penyediaan informasi dan data mengenai faktor lingkungan yang berpengaruh di bidang perikanan dan budidaya, sehingga terbentuk suatu sistem informasi global AQUASTAT.  AQUASTAT adalah sistem informasi global FAO yang dikumpulkan dari berbagai data diseluruh dunia terkait perikanan dan budidaya. Data yang ada di AQUASTAT merupakan kumpulan data sejak tahun 1958 dari 198 negara. Sistem informasi global ini dikembangkan untuk memudahkan dalam menganalisa dan menyebarluaskan informasi tentang sumber daya air dan perikanan

Manajemen konservasi di kawasan Tahura Ngurah Rai melibatkan beberapa elemen yang saling terkait meliputi Departemen Kehutanan, Pemerintah Provinsi Bali, UPT Tahura Ngurah Rai, BPHM Wilayah 1, dan masyarakat sekitar. Departemen Kehutanan dan Pemerintah Provinsi Bali berperan dalam hal pendanaan. UPT Tahura Ngurah Rai adalah dinas yang mempunyai tanggung jawab penuh terhadap semua kegiatan di kawasan Tahura. BPHM Wilayah 1 mempunyai peran dalam hal rehabilitasi dan pendidikan lingkungan hidup. Masyarakat lebih kepada penerapan kearifan lokal dan kesadaran memanfaatkan secara berkelanjutan. Manajemen konservasi di Tahura Ngurah Rai menjalankan beberapa fungsi yaitu perencanaan, pengorganisasian, pelaksanaan dan pengendalian. Pengendalian di Tahura Ngurah Rai dilaksanakan oleh BPDAS Unda Anyar secara rutin tiap bulannya. Ada tiga permasalahan utama yaitu limbah baik padat ataupun limbah cair, perambakan hutan dan penggunaan oleh pihak ke tiga yang tidak bertanggung jawab. Solusi dari permasalahan tersebut adalah melalui peningkatan kuantitas dan kualitas SDM, optimalisasi pal batas, sosialisasi kepada masyarakat dan melalui konsep pendidikan konservasi lingkungan serta peningkatan kearifan lokal sebagai upaya konservasi.

Pusat penelitian dan pengembangan (PPPGL) merupakan salah satu unit yang berada di bawah Badan Penelitian dan Pengembangan Energi dan Sumber Daya Mineral. Ada berbagai sarana dan prasarana penunjang penelitian geologi, geokimia, dan geofisika kelautan yang terdapat di PPPGL. Sarana dan prasarana tersebut meliputi kapal riset, alat pengambil sedimen (grab), alat pengukur parameter oseanografi (current meter, pH meter) dan  berbagai instrument akustik. Sebagai pusat penelitian dan pengembangan sampai saat ini sangat banyak data ataupun informasi mengenai geologi kelautan yang telah dihasilkan. Data tersebut berupa data lapisan kedalaman ataupun jenis sedimen laut dalam, sedangkan informasi yang telah dihasilkan seperti peta dasar perairan dan inventarisasi potensi sektor energi dan sumber daya mineral.


Research on the variability of a parameter to other parameters is very important in an aquatic. Wind is one of the factors most responsible for surface waters, especially surface waves. Period and wave height is a component that is directly influenced by wind speed or wind direction. Time series methods can help in analyzing the relationship between wind and wave parameters based on time. Through analysis of time series can provide benefits in knowing the phenomena or anomalies that occur in an ocean. The analysis shows that between wind and waves have positive coherence. Wind speed is the most influential factor on the period and wave height.

Keywords: wind, wave and time series


Penelitian mengenai variabilitas suatu parameter terhadap parameter lain sangat penting dilakukan di suatu perairan. Angin adalah salah satu faktor yang paling berperan di perairan permukaan khususnya untuk gelombang permukaan. Periode dan tinggi merupakan komponen gelombang yang secara langsung sangat dipengaruhi oleh kecepatan angin atau pun arah angin. Metode time series dapat membantu dalam menganalisis hubungan antara parameter angin dan gelombang berdasarkan waktu. Melalui analisis time series akan memberikan manfaat dalam mengetahui fenomena atau pun anomali yang terjadi di suatu perairan. Hasil analisis menunjukkan bahwa antara angin dan gelombang terdapat koherensi positif. Kecepatan angin merupakan faktor yang paling berpengaruh terhadap periode dan tinggi gelombang.

Kata kunci : angin, gelombang dan deret waktu


November 23rd, 2010

Adalah sebuah acara dari departemen hubungan luar dan komunikasi (Hublukom), Himpunan Mahasiswa Ilmu dan Teknologi Kelautan (HIMITEKA) IPB. Sejatinya, acara ini mempunyai tujuan utama untuk mempromosikan Departemen of Marine Science And Techology ke para anak SMA seluruh bogor. Namun, seiring berkembangnya ide kreatif dan inovatif para panitia, maka acara ini menjadi acara yang berskala cukup besar dan pertama bagi HIMITEKA. Lomba esai dan seminar “Laut dan Global Warming” menjadi acara yang sangat meriah dalam rangkaian Marine Goes To School 2010 yang digelar sejal Juni – November 2010.